resnet-50
Model ID: @cf/microsoft/resnet-50
50 layers deep image classification CNN trained on more than 1M images from ImageNet
 Properties
Task Type: Image Classification
 Code Examples
Worker - TypeScript
export interface Env {  AI: Ai;
}
export default {  async fetch(request, env): Promise<Response> {    const res = await fetch("https://cataas.com/cat");    const blob = await res.arrayBuffer();
    const inputs = {      image: [...new Uint8Array(blob)],    };
    const response = await env.AI.run(      "@cf/microsoft/resnet-50",      inputs    );
    return new Response(JSON.stringify(response));  },
} satisfies ExportedHandler<Env>;
curl
curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/microsoft/resnet-50 \    -X POST \    -H "Authorization: Bearer $CLOUDFLARE_API_TOKEN" \    --data-binary "@orange-llama.png"
 Response
[  { "label":"PERSIAN CAT" ,"score":0.4071170687675476 },  { "label":"PEKINESE", "score":0.23444877564907074 },  { "label":"FEATHER BOA", "score":0.22562485933303833 },  { "label":"POMERANIAN", "score":0.033316344022750854 },  { "label":"JAPANESE SPANIEL", "score":0.024184171110391617 }
]
 API Schema
The following schema is based on JSON SchemaInput JSON Schema
{
"oneOf": [  {    "type": "string",    "format": "binary"  },  {    "type": "object",    "properties": {      "image": {        "type": "array",        "items": {          "type": "number"        }      }    },    "required": [      "image"    ]  }
]
}
Output JSON Schema
{
"type": "array",
"contentType": "application/json",
"items": {  "type": "object",  "properties": {    "score": {      "type": "number"    },    "label": {      "type": "string"    }  }
}
}